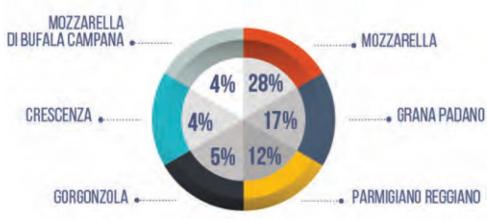


Il settore lattiero caseario integrato alla produzione di microalghe: caso studio delle acque di lavaggio e del latticello

Venerdì, 17 dicembre 2021 Convegno - Polo delle Microalghe

Valeria Mezzanotte
DISAT, Università degli Studi di Milano Bicocca

Progetto finanziato da:


IL SETTORE LATTIERO CASEARIO IN ITALIA

LA PRODUZIONE LATTIERO CASEARIA 2018

I NUMERI CHIAVE

FORMAGGI - Le principali produzioni

ATTIVITA' AGRICOLE COME FONTE DI SUBSTRATO DI CRESCITA E COME DESTINAZIONE FINALE PER LA VALORIZZAZIONE DELLE MICROALGHE

COLTIVAZIONE

REFLUI E SOTTOPRODOTTI DELL'INDUSTRIA LATTIERO CASEARIA

VALORIZZAZIONE

MANGIMI,
BIOFERTILIZZANTI,
BIOSTIMOLANTI,
BIOPESTICIDI...BIOPLASTICHE
PER LA PACCIAMATURA?

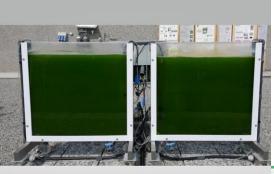
PERCHE' INTEGRARE LA COLTIVAZIONE DI MICROALGHE NEL SETTORE LATTIERO CASEARIO?

- Per produrre materiale o molecole di pregio
- Per ridurre il costo della coltivazione
- Per rimuovere il carico inquinante, soprattutto di azoto, in acque che andrebbero allo smaltimento

ECONOMIA CIRCOLARE

Flussi separati:

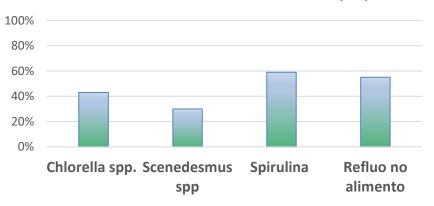
- Acque di lavaggio derivanti dalla manutenzione degli impianti. Possono contenere residui del latte, ma anche detergenti e disinfettanti
- Acque di processo, derivanti dal raffreddamento del latte, dal trattamento del latte o del siero. Geralmente caratterizzate dalla presenza di residui di latte (zuccheri, proteine, lipidi), ma dall'assenza di contaminanti aggiunti (detergenti, disinfettanti, additivi, ecc.)
- Acque nere

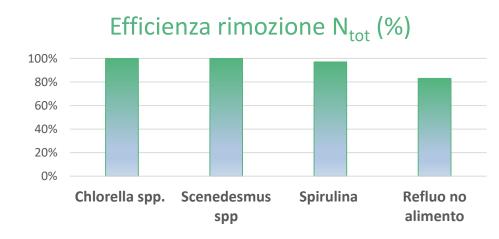


Substrati saggiati: ACQUE DI LAVAGGIO DI CASEIFICIO, ACQUE DI LAVAGGIO DI SIERIFICIO, LATTICELLO (acqua di processo)

Protocollo sperimentale

- Selezione ceppi o popolazioni in funzione del tipo di substrato
- 2. Prove preliminari in beuta in laboratorio
- 3. Prove in fotobioreattori a scala laboratorio o pilota


Caratterizzazione di base


рН	EC [μS/cm]	ABS 680 nm	Torbidità [FAU]					P-PO ₄ [mg/L]
4,74	3.300	1,758	1.565	6,52	0,051	2,34	102	270

Prove in fotobioreattori, scala laboratorio

Efficienza rimozione COD (%)

II - Acque di lavaggio di sierificio

Azienda a Cazzago S. Martino (BS) (capacità di stoccaggio: 1660 t)

Riciclo di prodotti nobili come lattosio e caseine tramite:

- Osmosi inversa,
- Ultrafiltrazione
- Sistema di concentrazione tramite evaporazione MVR.

EQUALIZZAZIONE ACQUE DI LAVAGGIO

II - Acque di lavaggio di sierificio

Caratterizzazione di base

	рН	EC μS/cm	TSS g/L	VSS g/L	N-NO ₃ mg/L	N-NO ₂ mg/L	N-NH ₄ mg/L	P tot mg/L	COD mg/L	
	7,8	3.054	0,18	0,13	0,3	0,0	31	17	982	
ICP	K mg/L	Mg mg/L	Ca mg/L	Si mg/L	Fe mg/L	Na mg/L	Zn mg/L	Mn mg/L	Mo mg/L	Al mg/L
	83	20	275	0.0	5	583	0.0	0.0	0.0	0.0
AAS	Cr μg/L	Ni μg/L	Pb μg/L	Cu μg/L	Cd μg/L					
	1.0	5.7	0.0	23	0.1					
	CI	SO	DO							

 CI⁻⁻ mg/L
 SO₄⁻⁻ mg/L
 PO₄⁻⁻ mg/L

 1.0
 5.7
 0.0

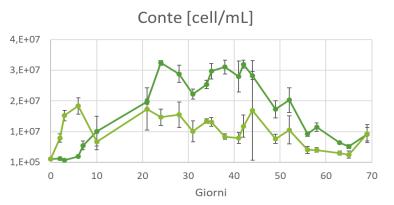
Rapporto molare N/P= 4

Piano sperimentale

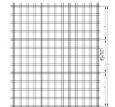
1. Valutazione dei ceppi più idonei tra:

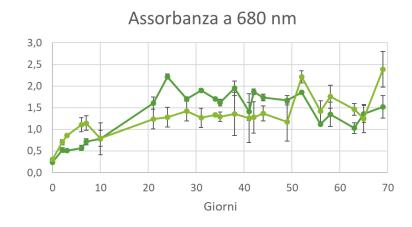
- a) Chlorella sp.,
- b) Scenedesmus acuminatus,
- c) Scenedesmus obliquus,
- d) Arthrospira platensis (Spirulina)
- e) Popolazione mista composta da *Chlorella, Chlamydomonas* e *Scenedesmus* spp.

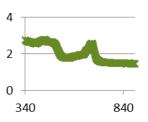
Scenedesmus acuminatus (SA), **Popolazione Mista** (PM)

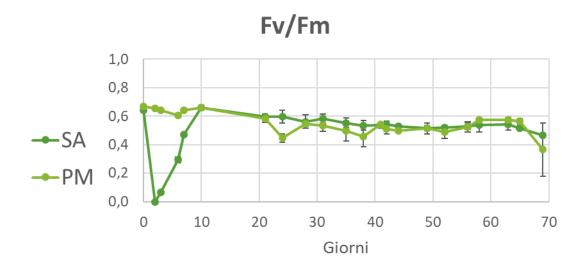

2. Test in laboratorio in semibatch (70 gg)

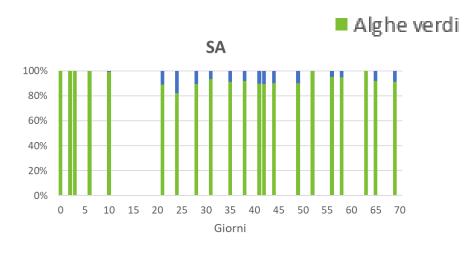
- 2.5 L volume coltura
- Ciclo luce/buio: 12h/12h (≈100 μmol m⁻² s⁻¹)
- HRT: 7 giorni
- Aggiunta di CO₂ per il controllo del pH (fissato a 7.5)
- Temperatura: 26.6 ± 2.6 °C

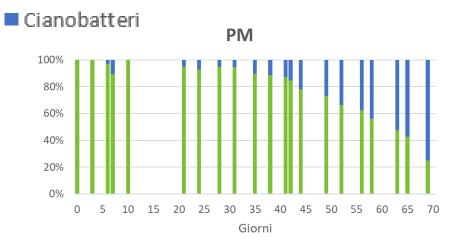



RISULTATI: crescita algale

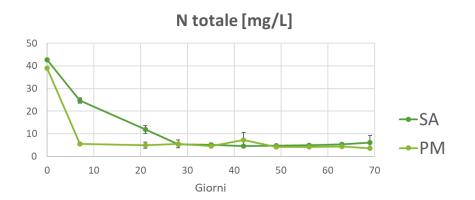


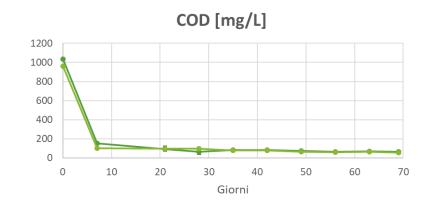






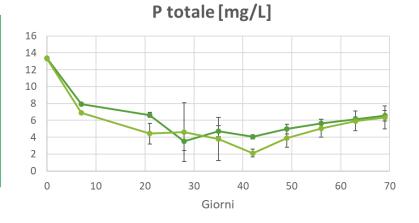
RISULTATI Analisi PAM



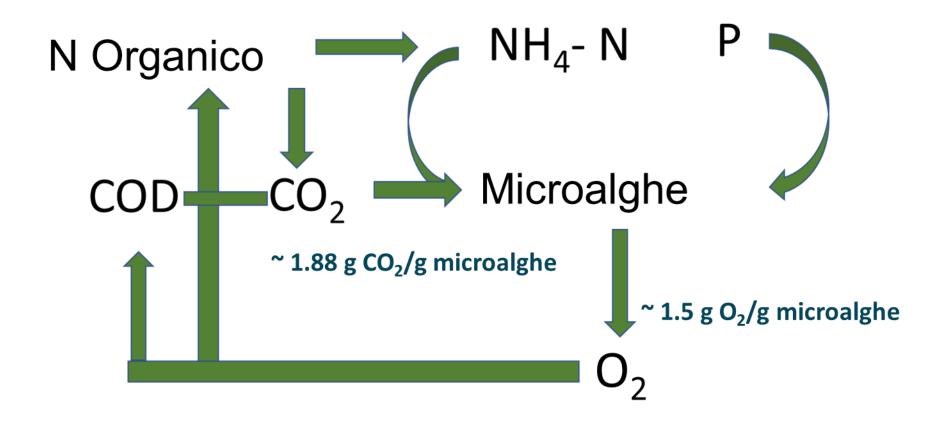


RISULTATI: Efficienze di rimozione

Rimozione % in SA:


N tot 89

NH₄-N 98


P tot 70

COD 89

Rimozione % in PM:
N tot 90
NH₄-N 99
P tot 71
COD 90

Bilancio CO₂

	SA	PM
mg CO ₂ /L/d insufflati per mantenere pH < 7.5	0.16 ± 0.04	0.22 ± 0.05
mg/CO ₂ /L/d necessari per la crescita	105 ± 70	105 ± 91

Raccolta delle microalghe

Tempo di sedimentazione

 T_0

1'

2′

3′

ნ′

10'

Qualità finale effluente

Parametro	Effluente trattato con alghe	Limiti italiani per scarico in acque superficiali (152/2006)	Limiti italiani per scarico in fognatura (152/2006)
рН	7.5	5.5-9.5	-
COD (mg/L)	43-102	160	500
NH ₄ -N (mg/L)	0.14-3	15	30
NO ₃ -N (mg/L)	<0.3	20	30
NO ₂ -N (mg/L)	<0.6	0.6	0.6
Tot P (mg/L)	2-7	10	10

Caratterizzazione del latticello

N-NH ₄ mg/L		united the second secon	NO ₃ -N mg/L		ST g/L	SV g/L
34	130	64	<0,3	35	15	13

FORTE CONCENTRAZIONE DI LIPIDI

Alto COD
Rapporto molare N/P ~ 4

Euglena gracilis

Prove in semi-batch in flat panel

PRETRATTAMENTO:

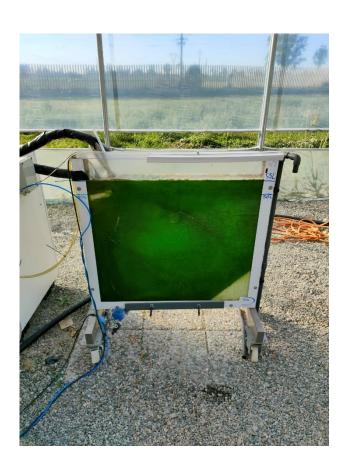
- Centrifugazione
- Diluizione in medium sintetico

Prova 1

(14 gg):

Diminuzione biomassa

Volume 50 L


HRT 10 giorni

Controllo in medium

sintetico

Diluizione 1:5

pH 4 controllato con insufflazione di CO₂

Prove in semi-batch in flat panel

PRETRATTAMENTO:

- Centrifugazione
- Diluizione in medium sintetico

Prova 2

(14 gg):

4,8 g/L ma forte contaminazione

Volume 50 L

HRT 10 giorni

Controllo in medium

sintetico

Diluizione 1:10

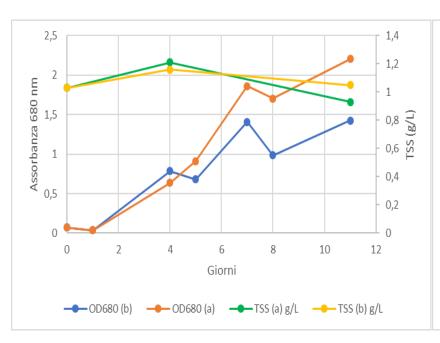
pH 4 controllato con insufflazione di CO₂

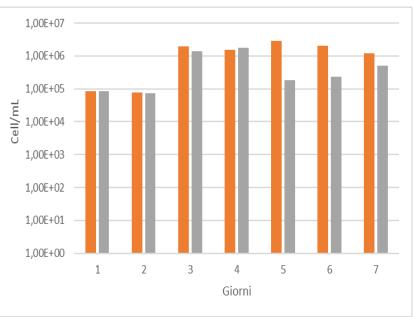
ANALISI BIOMASSA

- Concentrazione media di lipidi: 20%
- Concentrazione media di paramylon: 41% su latticello (30% nel controllo)
- Concentrazione media di proteine: 30% su latticello al 10%, 41% su latticello al 5%

Prove in batch in flat panel (in doppio)

PRETRATTAMENTO:

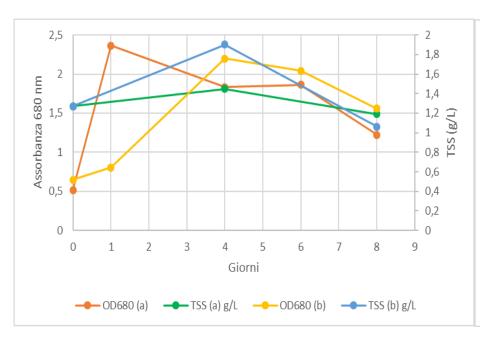

- Centrifugazione
- Diluizione in medium sintetico

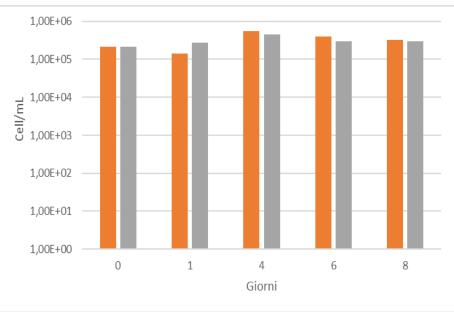

PROVA	CONCENTRAZIONE DEL LATTICELLO	DILUENTE	DURATA DELLA PROVA (GIORNI)
1	10%	Cramer Myers medium	12
2	20%	Cramer Myers medium	8

Prova 1 batch (latticello 10%)

Crescita algale

Prova 1 batch (latticello 10%)


Efficienze di rimozione


	N tot	N-NH ₄	COD
mg/L T ₀	136	171	7.906
mg/L T ₁₁	19	0,00	3.446
Rim.%	86	100	56

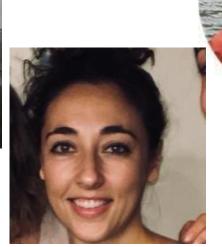
Prova 2 batch (latticello 20%)

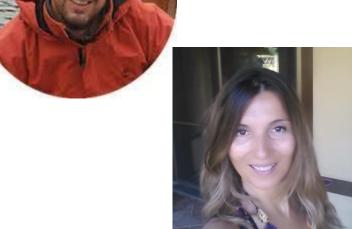
Crescita algale

Prova 2 batch (latticello 20 %)

Efficienze di rimozione

	N tot	N-NH ₄	COD
mg/LT ₀	123	72	8.259
mg/L T ₁₁	18	0,00	2.268
Rim.%	87	100	73


CONCLUSIONI


- L'ambito lattiero caseario produce acque di processo e acque di lavaggio che possono essere idonee come substrato per la crescita algale ma vanno valutate caso per caso
- Nel caso delle acque di lavaggio del sierificio il consorzio alghe-batteri è risultato efficiente nella depurazione e ha fornito un effluente adeguato allo scarico in acque superficiali, nel rispetto delle norme vigenti.
- In alcuni casi la coltivazione di ceppi specifici risulta più complessa ma può essere interessante per la possibile destinazione finale della biomassa
- Ove si voglia coltivare un ceppo particolare è opportuno operare in batch per contenere i rischi di contaminazione della coltura
- La coltivazione di *Euglena* su latticello presenta interessanti sbocchi in relazione al suo elevato contenuto in paramylon, ma la definizione delle condizioni ottimali richiede ulteriore lavoro di messa a punto

GRAZIE PER L'ATTENZIONE

